Skip to main content
Class/Seminar

Biology Seminar Series - Ayelet Voskoboynik

Sponsored by

This event is over.

Event Details:

"Botryllus schlosseri, a model organism for the study of tissue regeneration and the evolution of immunity"

For the past 20 years Ayelet has been researching development, stem cell mediating regeneration processes, and immunology in the colonial tunicate Botryllus schlosseri. As a PHD student in the Technion and IOLR (Israel) Ayelet discovered a method to extend the life span of the Botryllus colonies and suggested that this treatment affects the stem cells of the treated colonies. She became a post-doctoral fellow at the Tunicate lab of Irv Weissman in Stanford Hopkins Marine Station and studied stem cell mediating developmental processes. She isolated the first adult stem cell niche and the first germline stem cell niche in this organism. Since 2009 Ayelet has been leading and supervising the Botryllus studies in HMS and directed the Botryllus genome project with teams from the labs of Irv Weissman, Steve Quake and several international laboratories. In processing the Botryllus genome they developed a novel method for high-throughput sequencing of repeat-rich genomes (called Moleculo / LRseq; acquired by Illumina). Having the genome in hand Ayelet and her collaborators looked for the gene that controls immune recognition in the colonies and allows or prevents fusion of blood vessels between colonies. They isolated the BHF, a single polymorphic gene that allows Botryllus colonies to distinguish self from non-self. Recently, Ayelet and her collaborators began characterizing the Botryllus hematopoietic and immune system at the cellular and molecular levels and succeeded in identifying the hematopoietic stem cells (HSCs), myeloid cell lineage progenitors, cytotoxic cells that induce cellular tissue rejection, and the hematopoietic organ. Using the resources and tools she and others developed Ayelet continues studying the BHF, the evolution of blood borne immune system, and stem cell mediated regeneration programs.